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Thermal barrier coatings (TBC's) for turbine airfoils in high-performance
engines represent an advanced materials technology with both performance and
durability benefits. The foremost TBC benefit is the reduction of heat transferred
into air-cooled components, which yields performance and durability benefits (fig.
1). To achieve these benefits, however, the TBC system must be reliable.
Mechanistic thermomechanical and thermochemical life models are therefore required
for the reliable exploitation of TBC benefits on gas turbine airfoils. Garrett's
NASA HOST Program (NAS3-23945) goal is to fulfill these requirements.

This program focuses on predicting the lives of two types of strain-tolerant and
oxidation-resistant TBC systems that are produced by commercial coating suppliers to
the gas turbine industry (fig. 2). The plasma-sprayed TBC system, composed of a low
pressure plasma sprayed (LPPS) applied oxidation resistant NiCrAlY bond coating and
an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative
layer, is applied by both Chromalloy (Orangeburg, New York) and Klock (Manchester,
Connecticut). The second type of TBC is applied by the electron beam-physical vapor
deposition (EB-PVD) process by Temescal (Berkeley, California).

A viable model must predict TBC life on a turbine airfoil as a function of
engine, mission, and materials system parameters. These parameters are incorporated
into mechanical, oxidation, and salt deposition functions of TBC degradation as
indicated in figure 3. The approach adopted in this program for developing a TBC
life model is similar to that in use at Garrett for prediction of oxidation/hot
corrosion lives of metallic coatings as a function of engine, mission, and materials
system parameters (fig. 4). Similarities and differences in these models are
illustrated in figure 5.

A rapid computational capability is required for preliminary design and mission
analyses of TBC lives. Substructure models are being developed to facilitate the
rapid computation of TBC life as indicated in figure 6. TBC life analysis will be
performed for each of the critical damage modes.

Burner rig and mechanical property data are being obtained to quantify the
capabilities of each of the TBC systems for each critical mode of degradation.
Bi'rner rig test data and zirconia fracture toughness data are illustrated on figures
7 and 8. *

Lives of these TBC systems will be predicted for TFE731 high pressure turbine
blades for factory engine test, business aircraft and maritime surveillance
missions. Complementary engine validation tests are planned.

This program is now at the midpoint of Phase I. The program schedule is

provided in figure 9.

427 "RECEDING PAGE BLANK NOT FILMED



e
= B
Q.
Hog
& BLADE WITH
w g3 125um THICK
< ZIRCONIA COATING
= 2] UNCOATED
> BLADE
= 1 o
=
(=S
0 e LS T ¥ T L] 1
50 100

COOLING AIR REQUIREMENT, PERCENT

65-1951

Figure 1. TBCs Improve Creep Life and Reduce Cooling Air
Requirements for the Garrett High-Pressure Turbine
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Figure 2. Life Prediction Models are Being Developed for
Plasma-Sprayed and EB-PVD TBC Systems.
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Figure 3. TBC Life is a Function of Engine, Mission and
Materials System Parameters.
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Figure 4.
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Turbine Airfoil Coating Life Predicted by Computer

Model.
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Figure 5.
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Figure 6.
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Figure 7. TBC Spalling in Burner Rig Test is a Function of
Temperature.
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Figure 8. Zirconia Fracture Toughness of Chromalloy Plasma-
Sprayed TBC System is a Step Function of Exposure
Time and Temperature.
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Figure 9. TBC Life Prediction Schedule.
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